21:43 GMT - Wednesday, 05 February, 2025

Two-dimensional polyaniline crystal with metallic out-of-plane conductivity

Home - Nature & Science - Two-dimensional polyaniline crystal with metallic out-of-plane conductivity

Share Now:


  • Chiang, C. K. et al. Electrical-conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Phillips, P. & Wu, H. L. Localization and its absence—a new metallic state for conducting polymers. Science 252, 1805–1812 (1991).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kohlman, R. S. et al. Limits for metallic conductivity in conducting polymers. Phys. Rev. Lett. 78, 3915–3918 (1997).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, Z. H., Li, C., Scherr, E. M., Macdiarmid, A. G. & Epstein, A. J. Three dimensionality of metallic states in conducting polymers: polyaniline. Phys. Rev. Lett. 66, 1745–1748 (1991).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jeon, D., Kim, J., Gallagher, M. C. & Willis, R. F. Scanning tunneling spectroscopic evidence for granular metallic conductivity in conducting polymeric polyaniline. Science 256, 1662–1664 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, J. et al. Intrinsic glassy-metallic transport in an amorphous coordination polymer. Nature 611, 479–484 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Podzorov, V. Conjugated polymers: long and winding polymeric roads. Nat. Mater. 12, 947–948 (2013).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brondijk, J. J. et al. Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Basescu, N. et al. High electrical-conductivity in doped polyacetylene. Nature 327, 403–405 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Osterbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, E. Q. et al. Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, W. et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gutzler, R. & Perepichka, D. F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jing, Y. & Heine, T. Making 2D topological polymers a reality. Nat. Mater. 19, 823–824 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Springer, M. A., Liu, T. J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, K. J. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 1 (2023).

    CAS 
    MATH 

    Google Scholar
     

  • Qi, H. Y. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galvao, D. S., Dossantos, D. A., Laks, B., Demelo, C. P. & Caldas, M. J. Role of disorder in the conduction mechanism of polyanilines. Phys. Rev. Lett. 63, 786–789 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Krinichnyi, V. I. Dynamics of spin charge carriers in polyaniline. Appl. Phys. Rev. 1, 021305 (2014).

    ADS 

    Google Scholar
     

  • Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Madsen, G. K. H., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Liu, S. H. et al. Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Edit. 55, 12516–12521 (2016).

    CAS 

    Google Scholar
     

  • Kohlman, R. S. et al. Inhomogeneous insulator-metal transition in conducting polymers. Synthetic Met 84, 709–714 (1997).

    CAS 
    MATH 

    Google Scholar
     

  • Kohlman, R. S., Joo, J., Min, Y. G., MacDiarmid, A. G. & Epstein, A. J. Crossover in electrical frequency response through an insulator-metal transition. Phys. Rev. Lett. 77, 2766–2769 (1996).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 4, eaat5780 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Blochl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chang, T., Foster, D. & Kahn, A. An intensity standard for electron paramagnetic resonance using chromium-doped corundum (Al2O3: Cr3+). J. Res. Natl Bur. Stand. 83, 133–164 (1977).


    Google Scholar
     

  • Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS 

    Google Scholar
     

  • Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279–1288 (2019).

    CAS 

    Google Scholar
     

  • Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yuan, Q. et al. Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis. J. Am. Chem. Soc. 130, 3502–3508 (2008).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Talnack, F. et al. Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Mol. Syst. Des. Eng. 7, 507–519 (2022).

    CAS 

    Google Scholar
     

  • Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111, 5678–5684 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Gaus, M., Goez, A. & Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. Y., Gaus, M., Elstner, M. & Cui, Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B. 119, 1062–1082 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Highlighted Articles

    Subscribe
    Notify of
    0 Comments
    Oldest
    Newest Most Voted
    Inline Feedbacks
    View all comments

    Stay Connected

    Please enable JavaScript in your browser to complete this form.